- 
   
- [1] Zhao XZ, Sen MK, On several classes of orthodox Г-semigroups. Jour. Pure Math. (印度),  (1997) Vol. 14: 1-25. 
- [2] Pastijn F, Zhao XZ, Green’s D-relation for the multiplicative reduct of an idempotent semiring.  Archivum Math. (捷克、Brno), (2000) Vol. 36: 7-93. 
- [3] Zhao XZ, Shum KP, Guo YQ, L-subvarieties of the  variety of idempotent semirings. Algebra Univers., (2001)  Vol. 46: 7-96 .【SCI】 
- [4] Zhao XZ, Idempotent semirings with a commutative additive reduct. Semigroup Forum , (2002) Vol. 64: 289-96 .【SCI】 
- [5] Zhao XZ, Guo YQ, Shum KP, D-subvariety of the variety of idempotent semirings. Algebra Colloq., (2002) Vol. 9: 1-28.【SCI】 
- [6] Zhao XZ, Guo YQ and Shum KP, Sturdy frame of type (2,2) algebras with appli-cation to semirings.  Fund. Math. , (2003) Vol. 179: 69-81.【SCI】 
- [7] Zhao XZ, Locally closed semirings and iteration semirings. Monatsh.Math.,  (2005) Vol.144: 157-67.【SCI】 
- [8] Feng F, Zhao XZ, Jun YB,  *-μ-semirings and *-λ-semirings. Theoretical Computer Science, (2005) Vol.347: 423-431.【SCI】 
- [9] Ghosh S, Pastijn F, Zhao XZ, Varieties generated by ordered bands I. Order, (2005)Vol.22: 109-128.【SCI】 
- [10] Pastijn F, Zhao XZ, Varieties of idempotent semirings with  commutative addition. Algebra Univers., (2005) Vol.54: 301-21.【SCI】 
- [11] Feng F, Jun YB, Zhao XZ, On *–λ-semirings. Information Sciences, (2007)  Vol.177: 5012-5023.【SCI】 
- [12] Feng F, Jun YB, Zhao XZ, Soft semirings. Computers and  Mathematics with Applications,(2008) Vol.56: 2621-2628.【SCI】 
- [13] Zhao XZ, Jun YB, Ren F, The semiring of matrices over a finite chain,Information Sciences, (2008) Vol.178: 3443-3450.【SCI】 
- [14] Kong XJ, Zhao XZ, A new construction for regular semigroups with quasi-ideal orthodox transversals. J. Aust. Math. Soc. (2009)Vol.86: 177-187.【SCI】 
- [15] Chen W, Zhao XZ, The Structure of Idempotent Residuated Chains. Czechoslovak Math.J., (2009)Vol.59(134): 453-479.【SCI】 
- [16] Chen W, Zhao XZ, Guo XJ, Conical residuated lattice-ordered idempotent monoids. Semigroup Forum, (2009) Vol.79: 244--278.【SCI】 
- [17] Shao Y, Zhao XZ, Locally inverse semigroups with inverse transversals. Jouranl of Mathematical Research and Exposition, (2009) Vol.29(4): 599-606. 
- [18] Shao Y, Zhao XZ, Partial orders on right inverse semigroups, Chinese Quarterly Journal of Mathematics, (2009)Vol. 24(2): 194-199. 
- [19] 邵勇, 赵宪钟,半格序Clifford半群,数学进展,2010年第1期  59-63. 
- [20] Chen YZ, Zhao XZ, Yang L, On n × n Matrices over a Finite Distributive Lattice. Linear and Multilinear Algebras, (2012)Vol. 60(2): 131-147.【SCI】  
- [21] Tian J, Zhao XZ, Representations of commutative asynchronous automata. J.Comput.Syst. Sci., (2012)Vol.78(2): 504 -516.【SCI】 
- [22] Chen YZ, Zhao XZ, On Linear Operators strongly preserving invariants of Boolean Matrices. Czechoslovak Mathematical Journal, (2012)Vol. 62: 169-186.【SCI】 
- [23] Shao Y, Zhao XZ, Semirings which are distributive lattice of M-rectangular divided semirings. Algebra Colloquium, (2013)Vol.20(2): 243-250.【SCI】 
- [24] Chen YZ, Zhao XZ, Guo XJ, On several classes of additively non-regular C-semirings. Publ. Math. Debrecen, (2013)Vol. 83 (4), 517-536.【SCI】 
- [25] Gan AP, Zhao XZ, Glonal Determinism of Clifford semigroups. J. Aust. Math. Soc., (2014)Vol.97(1): 63-77. 
- [26] Fu YY, Zhao XZ, The Closed subsemigroup of Clifford semigroup , Communications in Mathematical Research,  (2014)Vol. 30(2), 97—105. 
- [27] Xu H, Tian J, Zhao XZ, Monoid-matrix type automata. Theoretical Computer Science, (2014)Vol.520: 1-10. 【SCI】 
- [28] Chen YZ, Zhao XZ, On Decompositions of Matrices over Distributive Lattices. Journal of Applied Mathematics (2014), Vol. 2014, Article ID 202075, 10 pages 
- [29] Ren MM, Zhao XZ, On free Burnside ai-semirings. Semigroup Forum, (2015)Vol.90(1):174-183【SCI】 
- [30] Chen YZ, Zhao XZ, On upper triangular nonnegative matrices,Czechoslovak Mathematical Journal,  (2015)Vol. 65 (140) , 1–20. 【SCI】 
- [31] Gan AP,  Zhao XZ, Ren MM, Global determinism of semigroups having regular globals, Period Math Hung, (2016) Vol.72:12–22. 【SCI】 
- [32] Gan AP,  Zhao XZ, Shao Y, Globals of idempotent semigroups, Communications in Algebra,  (2016)Vol.44: 3743—766. 【SCI】  
- [33]  Ren MM,  Zhao XZ, Shao Y, On a variety of Burnside ai-semirings satisfying xn ≈ x, Semigroup Forum,  (2016) Vol.93:501–515. 【SCI】 
- [34] Tian J, Shao Y, Zhao XZ, Out Subword-Free Languages and Its Subclasses, International Journal of Foundations of Computer Science, (2016) Vol. 27(3) : 305–326. 【SCI】 
-  [35]  Ren MM,  Zhao XZ, The varieties of semilattice-ordered semigroups satisfyingx3 ≈ x and xy ≈ yx, Period Math Hung, (2016) 72:158–170. 【SCI】 
- [36] Yu BM,  Zhao XZ,  Gan AP, Global determinism of idempotent semigroups, Communications in Algebra, (2017) ( Online) DOI: 10.1080/00927872.2017.1319474 
- [37] Zhao XZ,  Gan AP,  Yu BM, Global determinism of normal orthogroups, Semigroup Forum,  (2017) Vol.94:336–370. 【SCI】 
- [38] Ren MM,  Zhao XZ, Wang AF, On the varieties of ai-semirings satisfying 3 ≈ x, Algebra Univers. ,  (2017) Vol.94: 395–408. 【SCI】 
- [39] Yu BM, Zhao XZ, Zeng LL, A congruence on the semiring of normal tropical matrices, Linear Algebra and its Applications, (2018) Vol.555: 321–335. 【SCI】 
- [40] Yu BM,Zhao XZ, Gan AP,  Global determinism of idempotent semigroups,Communications in Algebra, (2018) Vol.46(1): 241-253. 【SCI】 
- [41] Yu BM,Zhao XZ, The bands satisfying the strong isomorphism property, Semigroup Forum, (2019)Vol. 98:327–337. 【SCI】 
- [42]  Ren MM, Zhao XZ, Shao Y, The lattice of ai‑semiring varieties satisfying xn ≈ x and xy ≈ yx, Semigroup Forum (2020) Vol. 100: 542–567. 【SCI】 
- [43] Jacksona M, Ren MM, Zhao XZ, Nonfinitely based ai-semirings with finitely based semigroup reducts, Journal of Algebra, (2022)Vol.611: 211–245. 【SCI】 
- [44] Deng WN, Zhao XZ, Cheng YL, Yu,BM, On the groups associated with atropical n ×n matrix, Linear Algebra and its Applications (2022) Vol. 639: 1–17. 
-   - 
    3.获奖情况    
    -   - 1. 半环代数理论的若干研究,陕西省教育厅,2019年度陕西省科学技术奖, 二等奖,  排名第一。 
 - 
    2. 半环代数理论的若干研究,陕西省教育厅,陕西高等学校科学技术奖,一等奖,排名第一。  
    - 
    3. 狠抓“三基、两论、一书”,陕西省教育厅,1997年陕西省普通高等学校教学成果奖,二等奖,排名第三。  
    -   
-